Tianshu Kuai

🗲 tkuai@cs.toronto.edu

https://tianshukuai.github.io

647-671-2214 **I** Toronto, Canada

Education

Sep 2022 – Mar 2024	Master of Science in Applied Computing, University of Toronto AI Concentration cGPA: 4.00 / 4.00
Sep 2017 – Apr 2022	Bachelor of Applied Science in Engineering Science, University of Toronto Robotics Major, Artificial Intelligence Minor Major GPA: 3.80 / 4.00, cGPA: 3.73 / 4.00 University of Toronto Excellence Award, NSERC Undergraduate Student Research Awards, Dean's Honour List

Experience

May 2023 - Ongoing	 Samsung AI Center Toronto Research Intern Supervised by Dr. Alex Levinshtein, Samsung AI Center Toronto Research on diffusion model based real-world image restoration and enhancement
May 2022 - Ongoing	 University of Toronto 3D Computer Vision Researcher Supervised by Prof. Igor Gilitschenski, Toronto Intelligent Systems Lab (TISL) Currently working on 3D scene representation and manipulation Proposed a template-free method [3] for building animatable 3D models for arbitrary types of articulated and deformable objects from a collection of monocular videos, which allows users to animate reconstructed objects in 3D for content creation
May 2021 - Apr 2023	 University of Toronto Computer Vision Researcher Supervised by Prof. Steven L. Waslander, Toronto Robotics and Artificial Intelligence Lab (TRAILab) Currently working on self-supervised LiDAR semantic segmentation for autonomous driving, and contributed to the development of a novel method [2] that outperforms state-of-the-art 2D-to-3D representation learning frameworks Designed and supported the development of high-performance LiDAR 3D object detection models for autonomous vehicles. PDV [1] achieved state-of-the-art multi-class 3D object detection results on Waymo Open Dataset upon publication Undergraduate thesis on improving feature learning processes to get more robust features and more accurate bounding box refinement for 3D object detectors
July 2021 - June 2022	 aUToronto Computer Vision Engineer University of Toronto Autonomous Driving Group, SAE/GM AutoDrive Challenge Research on fast and lightweight 3D perception models on collected data Worked on deploying real-time perception models on autonomous vehicles
May 2020 - May 2021	 Qualcomm Machine Learning Research Intern Supervised by Dr. Shaojie Zhuo, Machine Learning Research Team Proposed several efficient deep learning models for audio processing Applied state-of-the-art methods for neural network compression Contributed to NPU software compiler pipeline development

Publications

2023	[3]	T. Kuai , A. Karthikeyan, Y. Kant, A. Mirzaei, and I. Gilitschenski, "CAMM: Building Category- Agnostic and Animatable 3D Models from Monocular Videos," <i>CVPRW</i> 2023.
	[2]	A. Mahmoud, J. S. K. Hu, T. Kuai , A. Harakeh, L. Paull, and S. L. Waslander, "Self-Supervised Image-to-Point Distillation via Semantically Tolerant Contrastive Loss," <i>CVPR</i> 2023.
2022	[1]	J. S. K. Hu, T. Kuai , and S. L. Waslander, "Point Density-Aware Voxels for LiDAR 3D Object Detection," <i>CVPR</i> 2022.

Academic Service

Reviewer | CVPR 2023, WACV 2024

Honors

Jan 2020	University of Toronto Engineering CompetitionAwarded the second prize in the senior design competition
Mar 2019	 NSERC Undergraduate Student Research Award Undergraduate student research award from Natural Sciences and Engineering Research Council of Canada (NSERC)
Feb 2019	University of Toronto Excellence AwardAwarded to University of Toronto undergraduate students based on research aptitude
Sep 2017	University of Toronto Engineering Entrance ScholarshipScholarship for top engineering candidates pursuing studies at the University of Toronto

Selected Projects

2021	 Real Time Audio Denoiser A model built using convolutional neural networks with an encoder-decoder structure The model takes the noisy speech as input and produces a de-noised speech as the output Achieved good performance on various types of signals with only around 33k parameters
2020	 Deep Learning Based COVID-19 Diagnosis Tool A finetuned ResNet-18 for COVID-19 diagnosis using Lung CT scan Finetuned U-Net for labelling the infection area on raw CT scans for COVID-19 patients Great potential to be a commercial software product for hospitals where COVID-19 testing kits are unavailable
2019	 Autonomous Ball Dispensing Mobile Machine Started from literature and market survey, through professional engineering decision-making tools to successfully converge to a fully autonomous ball dispensing machine prototype Used PIC18F4620 with MPLAB X and Arduino Nano to enable movement of its components, real-time clock, user Interface, and IR Remote Control Can potentially be used for automatic delivery and dispensing in warehouses